书面测验是考查学生课程目标达成状况的重要方式,以“二元-次方程组”-章为例,说明设计数学测验试卷应关注的主要问题。-考呗网题库移动版
中学数学
首页 题库首页在线模考
取消

参考答案暂无
解析:(1)对学生基础知识和基本技能达成情况的测验,必须准确把握课程内容中的要求。学生在学习“二元一次方程组”这一章的时候应该掌握二元一次方程组的概念,消元法解方程组、二元一次方程组与实际问题等概念。在设计题型的时候,考查的知识点应包括以上知识点,达到全面性,以便宏观了解学生对本章知识的掌握程度。
(2)在设计试题时,应关注并体现学生对方程思想的理解、运算能力和应用意识的考查。题型练习要多样化,可以设置选择、填空、判断、解答等多种形式;试题的难度要有梯度,照顾到不同水平层次的学生,以便了解全体学生对本章知识掌握的程度,从而指导今后的教学工作。
(3)题目设置在检测学生掌握本章知识的基础上,应有对重难点、易错点的考查。比如“代入消元法…加减消元法”。

你可能喜欢

简答题案例:
某学校初二年级的数学备课组针对“勾股定理”-课的教学进行讨论,拟定了如下的教学
目标:
①掌握勾股定理的内容,体会数形结合思想;
②学会运用勾股定理。
为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
【教师甲】
首先,给大家介绍“赵爽弦图”的内容,板书课题,介绍三角形各边的名称。
然后,提问学生勾股定理的相关知识,给出勾股定理的内容:直角三角形两条直角边的平方和等于斜边的平方。
之后,介绍毕达哥拉斯的探索过程,让学生利用“面积法”验证定理内容。
最后,教师给出练习题(在下面的几组边中,找出能构成直角三角形的边长组合:①3,3,3;②3,4,5;③6,4,9;④6,8,10),学生练习。
【教师乙】
先介绍毕达哥拉斯在朋友家的趣事(毕达哥拉斯在朋友家做客时,发现朋友家的地砖图案反映了直角三角形三边中的某种数量关系),之后让学生去看地砖图形,结合毕达哥拉斯的探索过程(面积法:利用三角形三边分别构成不同的正方形,通过三个正方形的面积关系找到直角三角形三边的关系)自主探索三边关系,得出猜想。
然后,课件给出赵爽弦图,结合图形介绍“赵爽弦图”的证明过程,证明猜想。
最后,得出结论:直角三角形两条直角边的平方和等于斜边的平方。
巩固练习,思考讨论:还有没有不同的方法证明勾股定理的内容?
拓展介绍刘徽的证明方法,使学生感受数形结合,以形证数的思想。
问题:
(1)对该备课组拟定的教学目标进行评析并给出你设计的教学目标;
(2)分析甲、乙两位教师教学思路的特点。

延伸阅读