2017教师资格证全真模拟卷三:高中数学
时间:2017-02-03 来源:未知 作者:admin 点击:300次
A.χ=2.5 B.χ=l C.χ=-2.5 D.χ=0 7.牛顿和( )创立的微积分开创了数学的新领域:分析学。微积分将以难以解决的两个几 何问题(曲线切线问题和曲线所围面积问题)解决了,把这些问题简化为计算问题。 A.笛卡尔 B.莱布尼茨 C.费马 D.欧拉 8.《普通高中数学课程标准(实验)》将“( )、数学建模、数学文化”作为贯穿整个高中数学课程的重要学习活动,渗透或安排在每个模块或专题中,正是与创新能力培养的一个呼应,强调如何引导学生去发现问题、提出问题。 A.数学探究 B.数学应用 C.数学思想
D.数学概念 20世纪中叶以来,由于计算机和现代信息技术的飞速发展,使应用数学和数学应用得到了前所未有的发展,数学渗透到几乎每一个学科领域和人们日常生活的每一个角落。数学应用的巨大发展成为数学发展的显著特征之一。 (1)请举例说明高中数学内容在现实生活中的原型。 (2)分析高中数学教学中存在的问题。 五、案例分析题(本大题1小题,20分)阅读案例。并回答问题。 16.案例: 概念同化指从已有概念出发,理解并接纳新概念的过程,实质是利用演绎方式理解和掌握概念。由于数学中大多数概念是以属概念加种差的方式定义的,所以适宜采用概念同化的方式进行教学。以“奇函数,,概念教学为例简要说明概念同化的教学模式: (1)向学生提供“奇函数”概念的定义 (2)解释定义中的词语、符号、式子所代表的含义 突出概念刻画的是:对定义域中的任意一个自变量菇,考察χ与-χ对应的函数值f(χ)与f(-χ)之间的关系以f(-χ)=-f(χ)。因此函数的定义域应该关于原点对称,满足这个条件后再考察f(-χ)=-f(χ). (3)辨别例证,深化概念 教师向学生提供丰富的概念例证,例证中以正例为主,但也要包合适"-3的反例,尤其是一些需要考察隐含条件的例子。 (4)概念的运用 提供各种形式来运用概念,达到强化对概念的理解,促进概念体系的建构的目的,可以利用个别有一定综合性但难度不大的问题。 问题:(1)请举出反例说明(3)辨别例证,深化概念。(5分) (2)请举例补充(4)概念的运用。(5分) (3)请结合案例,总结出概念同化的教学模式的过程。(10分) 六、教学设计题(本大题1小题,30分) 17.下面是某教师执教《不等式的运用》的教学过程。 教学的具体环节如下:
12.【参考答案】 教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说: (1)强调对基本概念和基本思想的理解和掌握 教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程。在初步运用中逐步理解概念的本质。 (2)重视基本技能的训练 熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。 (3)与时俱进地审视基础知识与基本技能 随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化,教学中要与时俱进地审视基础知识和基本技能。例如,统计、概率、导数、向量、算法等内容已经成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。例如,立体几何的教学可从不同视角展开——从整体到局部,从局部到整体,从具体到抽象。从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式的教学要关注它的几何背景和应用;三角恒等变形的教学应加强与向量的联系,简化相应的证明。 口头、书面的数学表达是学好数学的基本功,在教学中也应予以关注。同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。 13.【参考答案】 (1)通过数学学习过程的评价,应努力引导学生正确认识数学的价值,产生积极的数学学习态度、动机和兴趣。 (2)独立思考是数学学习的基本特点之一,评价中应关注学生是否肯于思考、善于思考、坚持思考并不断地改进思考的方法与过程。 (3)学习过程的评价,应关注学生是否积极主动地参与数学学习活动、是否愿意和能够与同伴交流数学学习的体会、与他人合作探究数学问题。 (4)学生学好数学的自信心、勤奋、刻苦以及克服困难的毅力等良好的意志品质,也是数学学习过程评价的重要内容。 (5)评价应特别重视考察学生能否从实际情境中抽象出数学知识以及能否应用数学知识解决问题。(6)评价应当重视考察学生能否理解并有条理地表达数学内容。 (7)评价应关注学生能否不断反思自己的数学学习过程,并改进学习方法。
四、论述题 15.【参考答案】(1)函数有丰富的实际背景,出租车的计价、邮局寄包裹的计费都是分段函数的实际应用:考古学中也应用到了指数函数的性质;简谐振动的数学模型就是三角函数;平抛运动抽象为数学模型就是二次函数。 又例如:储蓄中的单利问题是等差数列模型,复利问题是等比数列模型。 算法中的取最小值问题、排序问题都是实际中常见的。 生活中的掷硬币决胜负、抽签决定出场次序都是概率模型在生活中的应用。 在研究力和速度时,向量就是很好的模型。 宇宙天体的运行轨道、铅球出手后的运动轨迹、汽车的广角灯等,都是圆锥曲线模型在实际中的应用。 通过这些实际例子,可以帮助我们更深刻地理解数学中的重要概念,有了对于这些重要概念(模型)的本质理解,就可以更好地利用这些模型来刻画(描述)实际问题。 (2)在我国数学教学中,比较突出的一个问题是忽视数学的应用,忽视数学与其他学科以及与日常生活的联系,忽视培养学生的应用意识。在很长一段时期内,数学教育界过分强调“数学是思维的体操”。把数学应用斥之为“实用主义”“短视行为”。1995年以后,虽然数学应用的呼声渐高,但是数学课程中对数学应用的重视程度还是比较低的。由于数学课程与教学中对数学应用的忽视,使学生在数学学习中,不能足够地认识到数学的应用价值、数学与日常生活以及其他学科的联系。 五、案例分析题(本大题l小题,20分)阅读案例,并回答问题。
|